Hormonal regulation of spermatid binding.
نویسندگان
چکیده
A Sertoli-spermatid coculture model is described in which a large percentage (greater than 76%) of round spermatids remain viable for 48 h and bind to Sertoli cells. The effects of follicle-stimulating hormone (FSH) and testosterone on spermatid binding (expressed as the spermatid density; SD = the number of spermatids per unit area of Sertoli cell cytoplasm), ultrastructure of the Sertoli-spermatid junctional complex, and distribution in the Sertoli cell of junction-related F-actin and vinculin are described. Following 48 h of incubation, neither FSH alone nor testosterone alone affected spermatid binding to Sertoli cells beyond that observed in control cocultures. However, the combination of FSH and testosterone (FSH + testosterone) resulted in a significant increase in the density of spermatids bound to Sertoli cells. Junction-related structure of the Sertoli cell cytoskeleton between the Sertoli cell and the pre-step 8 spermatid was different than that observed between the Sertoli cell and the post-step 8 spermatid. The junction-related cytoskeletal modification of the Sertoli cell (JCMS) in the latter was similar in appearance to the well-described 'Sertoli ectoplasmic specialization' observed adjacent to post-step 8 spermatids in vivo. FSH + testosterone and FSH alone, but not testosterone alone, resulted in the peripheral distribution of actin and vinculin, which otherwise remained in stress fiber-like structures throughout the Sertoli cell. Results show that maximal spermatid binding to Sertoli cells in vitro requires FSH + testosterone and is associated with the peripheral distribution of actin and vinculin.
منابع مشابه
Testicular expression of the Lin28/let-7 system: Hormonal regulation and changes during postnatal maturation and after manipulations of puberty
The Lin28/let-7 system, which includes the RNA-binding proteins, Lin28a/Lin28b, and let-7 miRNAs, has emerged as putative regulator of puberty and male gametogenesis; yet, its expression pattern and regulation in postnatal testis remain ill defined. We report herein expression profiles of Lin28 and let-7 members, and related mir-145 and mir-132, in rat testis during postnatal maturation and in ...
متن کاملIdentification of specific sites of hormonal regulation in spermatogenesis in rats, monkeys, and man.
A detailed understanding of the hormonal regulation of spermatogenesis is required for the informed assessment and management of male fertility and, conversely, for the development of safe and reversible male hormonal contraception. An approach to the study of these issues is outlined based on the use of well-defined in vivo models of gonadotropin/androgen deprivation and replacement, the quant...
متن کاملRBM5 Is a Male Germ Cell Splicing Factor and Is Required for Spermatid Differentiation and Male Fertility
Alternative splicing of precursor messenger RNA (pre-mRNA) is common in mammalian cells and enables the production of multiple gene products from a single gene, thus increasing transcriptome and proteome diversity. Disturbance of splicing regulation is associated with many human diseases; however, key splicing factors that control tissue-specific alternative splicing remain largely undefined. I...
متن کاملThe Effect of Cinnamon Extract on Spermatogenesis Hormonal Axis of Pituitary Gonad in Mice
Cinnamon has many therapeutic effects, such as its impact the increase of sexual ability. This experiment was conducted to determine the effect of cinnamon extract on spermatogenesis and hormonal axis of pituitary gonad in mice. The animals used in this study are male adult mice (weighing about 30-34 g and 9-10 weeks old). Cinnamon was purchased from one of the most valid shops in Jahrom and th...
متن کاملThimet oligopeptidase expression is differentially regulated in neuroendocrine and spermatid cell lines by transcription factor binding to SRY (sex-determining region Y), CAAT and CREB (cAMP-response-element-binding protein) promoter consensus sequences.
The zinc metalloprotease thimet oligopeptidase (EP24.15) is found predominantly in the neuroendocrine-gonadal axis where it is implicated in the processing of bioactive peptides, including GnRH (gonadotropin-releasing hormone), beta-neoendorphin, alpha-neoendorphin and dynorphin(1-8), the progression of spermatogenesis and the normal clearance of beta-amyloid in brain cells. Regulation of the e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 100 ( Pt 3) شماره
صفحات -
تاریخ انتشار 1991